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Equilibrium modes of a ferromagnetic string near a plane magnet and sub- 

jected to a uniformly distributed load are determined. The case when the 

initial spacing between the string and the magnet is commensurate with the 

displacements is examined. It is hence necessary to take account of the field 

dependence on the displacements despite the fact that these latter are small_ 

Assumptions [I] are made permitting reduction of the problem to a nonlinear 

boundary value problem for just the displacements. The same boundary value 
problem is obtained upon determining the equilibrium in the field of a curved 

magnet. A number of solutions is found, the dependence of the solutions on 
the parameters is analyzed, and the stability of the equilibrium is investigated. 

1. Nonllnrrr boundary vrlue problem, CIIO of I; lord directed 
toward the magnet. Let us consider 
a slender, stretched ferromagnetic string at- 

tracted by an electromagnet and loaded by 

a uniformly distributed load 4. We consider 

the magnetic permeability of the string, the 

magnet, and the magnetic circuit to be in- 
finite, the lines of induction to be closed in 

conformity with Fig. 1 , and enclosed by the 

Fig. 1 
same total current I. Let b be the width, 
and I the length of the string, A the spac- 

ing between the undeformed string and the 

magnet, and u (t) the displacements of points of the string, It is assumed that A < 

b < 1. and u is commensurate with A. Keeping the lowest term in u / b in the ex- 

pression for the ponderomotive force, we arrive at the boundary value problem [l] 

V” + (1 -:,z 
111, 

i-r-0, U (0) = U (w) := 0, L” -: dr 

u=z- 
/.&+I2 2pAZ 

A ’ 
r :z &, 

I co? =2Tb” T -= p&),2 (1.1) 

Here v, r are the dimensionless displacement and a coordinate, T is the tension, and 
PLO is the magnetic permeability of the medium. The same equation describes the equi- 
l.ibrlum of a string bent by a magnet in the shape of a parabolic cylinder in the absence 

of an external load [l]. The solution of the boundary value problem (1.1) depends 

essentially on the sign of 1. Let y > 0 (load directed toward the magnet). The equa- 

tion in (I. 1) hence has no singularities, and its first integral is 

w% = 2 (v, - v) [(I - v,)_’ (1 -- v)_’ + v], w = v’ (1.2) 

Here u,,, is the value of v upon intersection of the phase trajectory with the Ov -axis. 

90’2 
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That one of the segments AB of the phase trajectories (Fig. 2a) which the describing 

point tlaverses during the “time” 7 = o corresponds to the solution of (1.1). Since the 

lines AB are symmetric with respect to 00, then the shape of the string is also sym- 

metric relative to the axis passing through its center. The quantity v,,, equals the maxi- 

mum dimensionless displacement reached at the center of the string. Integrating (1.2). 

taking account of the condition v (0) = 0, we obtain 
1’ 

T (li) = s ’ {2(?J,n -q [(I - l’m)-’ (1 -- q-1 , ;J)“,* IlS, (I -: T c: IO 2 ( 1.3) 

0 

The shape of the string is determined by the relation (1.3) to the accuracy of the quan- 

tity I+,,, which is found from the condition v,,, = u (o / 2). The dependence D,,~ = v,,, (0) 

is thereby determined which describes the curve called ordinarily the equilibrium curve 

0 G= 2t (Pm) (1.4) 

The function o (L.,,,) is expressed in terms of elliptic integrals of the first and second 

kinds. But its inversion by such means is difficult, hence, let us start from expressions 
with quadratures. Evidently (11 (0) :- o (1) 7 0 for all y > (1. We have 

g2 --- I/< 11 $- y (I - rm) (2 -. r&1-’ z (I 5) 

The functions g,. gz and ,:I, are nonnegative, and g,, g3 increase monotonously, while gl 
decreases monotonously as z’,,~ grows for 0 : 3 . l 1. Therefore, the integrand in (1.5) 

decreases monotonously as +,, grows. Hence, the derivative i)0.‘0/.,,~ has not more than 
one zero for 0 .’ )‘,,, .-.; 1 . But since act) i h,, -+ C-K as v,, --9 0 and 00 ! al:,,, --d - ,: 
as z*,,~ -t 1, then there exists a value rrn for which do) / do,,, = 0. Therefore, in this case 

the function o) (z:,,~) has a single maximum o = 01 (Figs. 3, 4). Correspondingly, for 

0 := 01 there exist two equilibrium modes for the same values of the parameters, one 
mode for (1) . 2 O[ while equilibrium is impossible for o < (1~ . 

Fig. 2 
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2. Load directed aWry from the mrgart, For pr; 0 Eq.(l.l) has the 
singularity 1; 7 1 -- (-_I’)-’ ?, 1,~ := 0 in the OL.W, G > 1 . The first integral of this equa- 
Iion 
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80% J 2r (urn1 - v) (z& - a) (I - up 

(l--Etnrl)(i-Uma)=-l/r \“.!I 

determines closed phase trajectories intersecting ov for v == vml and I.= i.,,is. Hence, 
the sing&WV is a center at 0 < -1 in the interval 0 < 7‘ cc 1, at Y > 1 in the 

interval -00 < v < 0 (Fig. 2 b, c). 
Two gn>ups of phase trajectory segments in addition to the others: segments of the 

form AB and BA (Fig.2 b, c), can correspond to the soiution of the problem (1.1) in 

this case, The segments A3 determine the equilibrium modes with positive displace- 

ments (see Sect, I), and the segments B:l those with negative displacements, These 

modes are symmetric and the maximum displacement in absolute value, equal to %I ~0 

for “positive” and v,,,, < 0 for “negative” modes, is reached at the center of the sning. 

Moreover, equilibrium modes corresponding to the transitions ABA, ABAB etc., are 
possible, It is necessary to select those among al1 these segments, which are traversed 
during the time 7 = 0. The differences in the location of the center and the cases 

y < -_1 and 7 > - 1 influence the nature of the solution substantially. 
Let y < - 1. Let us first examine positive one-extremal modes. The relationships 

(1.3),(1.4) are retained for them, but the limits of the possible variations in F,,Z in this 

case will be BP < I:~ < 1, where f’il : i -+ 1 : J-. It is necessary that the integrand in 

(1.3) be real_ Let us introduce the variable I = xp i i‘fn in (1.3). We anivt? at an in- 
tegral with Emits 0, VP in (1.4) in which the integrand will be a monotonously deceas- 

ing function of urn. Hence, as z:~ increases from I’,,, 2= rp to rrn == i, the function (II (z,,,) 

decreases monotonously to zero. From (1.5) we have ire / &I, - - M as Z‘VI --* 1 and 
vm -+ rp. Therefore, positive single-extremal modes exist in this case in the domain 

b G o < op (y), where (‘IS, (%A ~~i~. such a mode is unique for given o (Fig. 4). 

tit us consider negative single-extremal modes. The dependence o \c& for them is 

The derivative of the integrand in (‘2.2) with respect to I thza i is positive for any 1 rmz I. 
Therefore w W,,) exists for all I cm” f and grows mono~no~ly as 1 %z 1 grows. Hence, 
for given (1, a negative single-extremai mode exists and is unique for all O> 0 and 

$7 %I 
1 

Fig. 3 Fig. 4 
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o{0J=O, Bolti,-+-oo fort%,, 1--r.0 (Fig.4). 
Three branches of multlextremal modes branch off from the branches of the positive 

single-exaemal modes for 0 = 0,. These two modes are nonsymmetric. correspond to 
the paths ABA and Bdb of the describing point (Fig. 2 b) and are obtained one from 
the other by a mirror reflection in the plane passing through the center of the sting 
perpendicular to the Oz-axis. The third mode is symmetric and corresponds to the 
path BASA. 

All these modes can be found as follows. Let us consider a positive single-extremal 
mode for some o = o, , to which u,, (y) corresponds. Let us find a “conjugate” value 
vmr from (2.1) and determine o, from the relationship rm2 = l!rna (0,) for negative 
single-e-ma1 modes. A two-exuemal mode of type AL4 corresponds to the value 
o=*+%. A string having such a mode divides into two section? : on the first the 
mode coincides with a single-extremal mode for o = ol, and on the second for 0 = 0%. 
Modes of the type ABABA generated for o = 20, (~1, etc., are determined analogously. 

Let t > -1. We consider positive single-extre,mal modes. They are defined by the 
relationships (1.3). (1.4). 0 Q v, , < i as in the case y > 0. Let us show that the depen- 
dence o = o (v,) has just one maximum. As before, C% / aV,,,+ m as v,,, -f (J and 
ao/av, e--o0 as v,+l, i.e. o (v,,,) has at least one maximum. We assume that 
one maximum is split into several maxima and minima for Y = vs. For y = Ye let the 
maximum be reached for urn = urn*- Then we should have 

ihif3v, = 0, a?o/av,a~ = 0 (2.3) 

for %n i Q%,, y S r’r . It can be shown that the equalities (2.3) are inconsistent. 
Hence, it follows that the generation of new extrema is impossible as Y varies in(-1,0) 
and the curves o (v,) have just one maximum (Fig. 4). 

In this case negative single-extremal equilibrium modes are also possible. The de- 
pendence o ( I urn2 1 1 for them is defined as before by the relationship (2.2). where 
however ~um2)2vP=)ii-l/y~. Let us find the derivative do / 8 I v,,,, 1, which has 
the form (1.5). but V, is replaced by - I v,,,, I. For 1 v,,,, I = up the function gr in (1.5) 
goes over into g, = Z+ up-l and the corresponding integral diverges. On the otha 
hand, for I z‘rn2 I -+ 00 the function gl (z, 1 v,,,, 1 ) decreases as I v,,,, I-‘b, and the pn~ 
duct g, gs as 1 urn1 (-‘It. Hence, for some 1 vrnr I the integrand la the e-on for the 
derivative will be positive. Therefore, the branch of the negative modes has a limit 
point (Fig. 4). 

The branch o, = o (VP) of the single-extremal modes emanating from the limit 
point toward smaller 1 v ma I splits into three branches at the point (%, ap), the branch 
of the three-extremal symmetric modes ABAB and two branches of the two-extremal 
nonsymmetric modes ABA and BAB. These males can be found by the above-men- 
tioned addition method. 

There remains to conclder the case v = -1. In this case, there is a solution v z 0 

corresponding to an undeformed string for any o . For Y = -1, we obtain from (1.3). 
(1.4) 

+V_,_sl/~Vl+;_ ) (2.4) 
0 urn = 

Far % > d the relatio&ip (2.4) describes a branch of single-examal modes into 
which the branch of single-extremal positive modes corresponding to the case Y ,> -1 
and Iocated between the limit point an4 the point o, = 1 goes for v---t -i t_ f 
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Another (“lower”) branch of these modes goes into segments of the o -axis between the 
point w == u and the point of in~rsect~on of the o-axis and the lines (12.4). Setting 

u m= U into (‘2.4), we obtain o = x i v2. The limit point of the branch of positive 
single-extremal modes for y -f -1 -r 0 arrives at the point w = jr ; r/ 1: I’~,! - 0 hence 

the tangenr to the curve z’In. (w) is vertical at this point (Fig. 4). 
The limit point of branches of the negative single-extremal modes also arrive at the 

pointo=X/~,Z-m=IOasYCf-~ 0. The segments of this branch which are 
located between the limit point and the branch point go over into the segments 2 Iv ? 
w < n 1~~2 of the o-axis and its infinite part goes over into an infinite branch of single- 

extremal modes which are described by the same expression (2.4) if 1,)) is replaced by 

-I vmz 1. Moreover, an infinite number of branches of multiextremal modes theoreti- 
cally branch off from the solution u z 0 for values of (r) which are multiples of n ! 1’ 2. 

3, StAbiIity of the &quilfbr~u~~ Equation (1.1) can be derived from the 
variational principle (1, 

6F’ TLI 0, 1. = \ :1-_ ,..i ~ :,A,- _~. ‘Cl.) (j? 
;i.. 

(3.1) 

0 

where functions v (r) such that u (0) r 1’ (w) = 0, 2’ f~j E /,JO, w) and 2) (T) < 1 are 
admitted for comparison, We consider an equilibrium mode stable if it renders the func- 

tional v a local minimum in the mentioned class of functions. Let us investigate the 

stability of the undeformed state for I’ =-= -1. The second variation of the functional 

(3.1) in the solution 2’ zz 0 has the form 

where j (Oj = 5 (0) = 0 and 5’ (5) E I,, (0, 0). For such 5 (T) we have 

(3.31 

0 0 

where such < (r) exist for larger coefficients in front of the second integral that the 
opposite inequality is satisfied. Hence, 6% v will be greater than zero for o < n/qs, 

i.e. the undeformed state is stable up to the bifurcation point o = SE / 0. At the bifur- 
cation point it becomes unstable to the first degree of instability, and the stability goes 

over to the branch of the negative modes. At the next singular point 
o = n ]j’z the undeformed state becomes unstable to the second degree of instability, 

and the departing branches will be of the first degree of instability, etc., as in the long- 

itudinal bending problem. 
Let us consider positive modes for y > -1. We take v (a, ?ij on the 

branch with smaller L+,,. For o = const and y ---) -1 this mode goes continuously over 

into a stable undeformed state. The stability does not vary in such a passage, hence this 
mode is stable, It follows from the shape of the equilibrium curves urn (0) for y =const 
that stability vanishes at the limit point, and the branch with the greater cm is unstable. 
By the same means we find that the branch of the negative modes going 

to infinity from the limit point is stable. Negative modes are also 

stable for -l< - 1. All the remaining modes are unstable. 
It is remarkable 

negative branch ; this latter 
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is due to the interchange of the growth and diminution of o (z) (Fig. 2 c). For compa- 
rison, let us show that in a similar problem examined in [2] and in a number of problems 
on Euler elastica. the modes with an inflection are known to be unstable. 

The displacements are determined as the sum of the function v (r) found earlier and 
a second degree polynomial in t in the problem of equilibrium of a string without an 
external load under the effect of a curved magnet. Hence, only positive forms without 

inflection points are obtained, as it should be also in the case of a load which does not 
change sign for any displacements. 
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General relationships of the theory of ideal plasticity and the statics of a fri- 
able medium for Tresca plasticity condition and its extensions, on the basis 

of determining the dissipation function, are considered. The work is related 
to the investigations in [I, 21. 

1. Under the Tresca plasticity condition, the dissipation-function is 

D = 2k I k = const (1-i) 

where Ei max is the maximum principal strain rate component. For definiteness,we later 
assume ei = &a; we shall consider the material incompressible. Let us write the initial 
functional to determine the associated loading law as 

D = 2% e3 (Eij) L P (% i- Ey i h) (1.2) 

where ei, are the components of the strain rate tensor, p is a Lagrange multiplier. It 

is necessary to know the expression e3 = e, (eij). Let ni denote the direction cosines of 
the third principal direction in a Cartesian coordinate system zi. Then niE3 = E{j?Zje 

Hence, the known formula follows 
e3 = Eij n{?l, (i.3) 

Using (1.3), it is necessary to take into account that nt = ai (etj) since the orientation 

of the principal directions change when the components of the strain rate tensor change. 

Taking account of (1.2). (1.3). in conformity with the associated loading law we obtain 


